Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques.

نویسندگان

  • K Määtta
  • J Kostamovaara
  • R Myllylä
چکیده

The possibilities for using the pulsed time-of-flight (TOF) laser radar technique for hot refractory lining measurements are examined, and formulas are presented for calculating the background radiation collected, the achievable signal-to-noise ratio (SNR), and the measurement resolution. An experimental laser radar device is presented based on the use of a laser diode as a transmitter. Results obtained under real industrial conditions show that a SNR of 10 can be achieved at measurement distances of up to 15-20 m if the temperature of the converter is 1400 °C and the peak power of the laser diode used is 10 W. The single-shot resolution is about 60 mm (sigma value), but it can be improved to millimeter range by averaging techniques over a measurement time of 0.5 s. A commercial laser radar profiler based on the experimental laser radar device is also presented, and results obtained with it in real measurement situations are shown. These measurements indicate that it is possible to use the pulsed TOF laser radar technique in demanding measurement applications of this kind to obtain reliable data on the lining wear rate of a hot converter in a steel works.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified Pulsed Laser Range Finder and Velocimeter using Ultra-Fast Time-To-Digital Converter

In this paper, we present a high accuracy laser range finder and velocimeter using ultra-fast time-to-digital converter (TDC). The system operation is based on the measuring the round-trip time of a narrow laser pulse. A low-dark current high-speed PIN photodiode is used to detect the triggered laser beam and to produce start signal. The pulsed laser diode generates 45W optical power at 30ns du...

متن کامل

Experimental Study of a Flash-lamp Pumped Passively Q-Switched Nd:YAG Laser Using Cr4+:YAG Saturable Absorber

This paper deals with the experimental results of a xenon flash-lamp pumped passively Q-switched Nd:YAG laser using Cr4+:YAG saturable absorber. The need of a laser cavity to be integrated into a time-of-flight laser range finder is of great interest as an experimental investigation of several laser resonators. Two types of laser resonator, with different lengths, have been studied: the flat-fl...

متن کامل

Pulsed Time-of-flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications

This thesis describes the development of high bandwidth (~1 GHz) TOF (time-of-flight) laser range finder techniques for industrial measurement applications in the measurement range of zero to a few dozen metres to diffusely reflecting targets. The main goal has been to improve single-shot precision to mm-level in order to shorten the measurement result acquisition time. A TOF laser range finder...

متن کامل

Bayesian Estimation of Distance and Surface Normal with a Time-of-Flight Laser Rangefinder

We describe a Bayesian estimation method for measurement of both range and surface orientation using a laser range finder. The method not only provides more accurate estimates of range for dark surfaces that are difficult to measure, but also simultaneously provides estimates of surface normals. This paper describes our efforts for a commercially available sensor, the laser rangefinder Acuity A...

متن کامل

Laser Range Finder for Air Borne Application

Laser Range Finder (LRF) is a most commonly used sensor for non-contact distance measurement and its applications cover wide areas of civil and defense. This paper discusses the design of Time of Flight (TOF) based single channel pulsed LRF, in which single optical channel has been used for transmitting and receiving of laser pulse with the day sighting capability. It offers considerable size r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 32 27  شماره 

صفحات  -

تاریخ انتشار 1993